This review explores the complex relationship between diabetic neuropathy and cardiovascular disease (CVD). Neuropathy, a common complication of type 1 and type 2 diabetes, is divided into autonomic and peripheral types, each impacting cardiovascular health. Cardiovascular autonomic neuropathy, a form of autonomic neuropathy, is associated with various CVD complications, including arrhythmias, impaired nocturnal blood pressure regulation, and increased mortality. The prevalence of cardiovascular autonomic neuropathy varies depending on the type and duration of diabetes and is influenced by factors like glycemic control and metabolic stress. Peripheral polyneuropathy, which is often linked to diabetic foot disease, is also correlated with elevated CVD risk; research suggests shared pathophysiological mechanisms between peripheral neuropathy and cardiovascular conditions. Screening for neuropathies using tools like the Michigan Neuropathy Screening Instrument and heart rate variability analyses can facilitate early detection of CVD risk. Additionally, emerging technologies, like deep learning models, have demonstrated promise in detecting early cardiovascular patterns associated with autonomic neuropathy through electrocardiogram analysis. These findings underscore the value of integrating novel diagnostic approaches for early intervention. As CVD represents a leading cause of death among patients with diabetes, this article emphasizes the need for thorough assessment and proactive management of neuropathy to mitigate cardiovascular risk. The review recommends a multidisciplinary approach to diabetes care, including early screening, accurate risk stratification, and targeted therapeutic strategies to prevent or slow the progression of CVD in patients with autonomic and peripheral neuropathies. Further research is warranted to clarify the optimal intervention strategies for reducing CVD risk in these populations.
Background Dyslipidemia is common in patients with type 2 diabetes mellitus (T2D) and contributes to an increased risk of cardiovascular disease. Previous studies have shown that treatment with thiazolidinediones (TZDs) and sodium-glucose cotransporter-2 inhibitors (SGLT2-i) may help to improve dyslipidemia in T2D patients. In this study, we investigated whether patients treated with TZD and SGLT2-i showed greater improvement in high-density lipoprotein cholesterol (HDL-C) levels than those treated with only SGLT2-i.
Methods From the National Health Insurance Service database of Korea, we extracted all patients who first received SGTL2-i from 2014 to 2016. Propensity score matching was performed to balance the two groups: group A (SGTL2-i and TZD, regardless of other antidiabetic medications) and group B (SGTL2-i only without TZD, regardless of other antidiabetic medications). Posttreatment HDL-C levels were compared by the Student t-test.
Results In total, 1,400 T2D patients (700 in each group) were matched by propensity score matching. There was a significant posttreatment increase in HDL-C in group A (49.54±20.03 to 51.6±12.92 mg/dL, P=0.007), but not in group B (49.14±13.52 to 49.1±2.15 mg/dL, P=0.937). Group A also showed significantly higher posttreatment HDL-C levels than group B (51.4±12.92 vs. 49.1±12.15 mg/dL, P<0.001). Regarding the secondary endpoints, posttreatment triglyceride levels were lower (P<0.001), but total cholesterol (P=0.131) and low-density lipoprotein cholesterol levels (P=0.054) were not different after treatment.
Conclusions The combination of SGTL2-i and TZD may be more effective in ameliorating dyslipidemia in T2D patients than SGLT2-i alone. However, further studies are needed to confirm this finding.
Citations
Citations to this article as recorded by
SGLT2 Inhibitor Use and Risk of Dementia and Parkinson Disease Among Patients With Type 2 Diabetes Hae Kyung Kim, Geert Jan Biessels, Min Heui Yu, Namki Hong, Yong-ho Lee, Byung-Wan Lee, Eun Seok Kang, Bong-Soo Cha, Eun Jig Lee, Minyoung Lee Neurology.2024;[Epub] CrossRef
A Green Approach: Optimization of the UPLC Method Using DoE Software for Concurrent Quantification of Pioglitazone and Dapagliflozin in a SNEDDS Formulation for the Treatment of Diabetes Ehab M. Elzayat, Abdelrahman Y. Sherif, Mohamed W. Attwa, Mohammad A. Altamimi ACS Omega.2024; 9(45): 45011. CrossRef
Hypoglycemia in people with type 2 diabetes mellitus (T2DM) is troublesome and an important barrier to diabetes management. Although more intensive glycemic control is emphasized to prevent diabetes-related long-term complications, it raises the risk of hypoglycemia in people with T2DM. Severe hypoglycemia (SH), defined as critical events characterized by altered mental and/or physical status requiring assistance for recovery, is considered an advanced and life-threatening form of hypoglycemia. The detection of SH is an important issue because it is associated with further adverse clinical outcomes such as cardiovascular events, mortality, cognitive impairment, and decreased quality of life. By identifying the potential risk factors for SH and introducing measures to minimize SH, SH itself and subsequent harmful clinical outcomes could be prevented in people with T2DM. The traditional risk factors for SH in T2DM, such as older age, long-standing diabetes with decreased insulin secretion, advanced vascular complications, serious comorbidities, and insulin use, are usually unmodifiable. However, unhealthy lifestyle factors, defined as current smoking, heavy alcohol consumption, and lack of regular exercise, can be improved through active patient education. In recent research, greater adherence to healthy lifestyle factors and any improvement in unhealthy lifestyle habits were found to be associated with a substantially lower risk of SH in individuals with T2DM. As well as being an essential component of diabetes self-care and optimal glycemic control, lifestyle modification probably contributes to the prevention of SH in individuals with T2DM.