Skip Navigation
Skip to contents

CPP : Cardiovascular Prevention and Pharmacotherapy

Sumissioin : submit your manuscript
SEARCH
Search

Search

Page Path
HOME > Search
2 "Logistic models"
Filter
Filter
Article category
Keywords
Publication year
Authors
Special Articles
Logistic Regression and Least Absolute Shrinkage and Selection Operator
Hyunyong Lee, Hun-Sung Kim
Cardiovasc Prev Pharmacother. 2020;2(4):142-146.   Published online October 31, 2020
DOI: https://doi.org/10.36011/cpp.2020.2.e15
  • 3,678 View
  • 33 Download
  • 1 Citations
Abstract PDF
Logistic regression, a model that forms a binary dependent variable and one or more independent variable(s), is used especially in epidemiological studies. By understanding the logistic model and its applications, such as odds ratio (OR) and performance efficiency, the concept of logistic regression can be easily grasped. The purpose of this article is to 1) introduce logistic regression, including odds and OR, 2) present predictive efficiency, such as area under the curve, and 3) explain the caution of logistic regression analysis.

Citations

Citations to this article as recorded by  
  • Perceptron: Basic Principles of Deep Neural Networks
    Eung-Hee Kim, Hun-Sung Kim
    Cardiovascular Prevention and Pharmacotherapy.2021; 3(3): 64.     CrossRef
From Traditional Statistical Methods to Machine and Deep Learning for Prediction Models
Jun Hyeok Lee, Dae Ryong Kang
Cardiovasc Prev Pharmacother. 2020;2(2):50-55.   Published online April 30, 2020
DOI: https://doi.org/10.36011/cpp.2020.2.e6
  • 2,850 View
  • 30 Download
Abstract PDF
Traditional statistical methods have low accuracy and predictability in the analysis of large amounts of data. In this method, non-linear models cannot be developed. Moreover, methods used to analyze data for a single time point exhibit lower performance than those used to analyze data for multiple time points, and the difference in performance increases as the amount of data increases. Using deep learning, it is possible to build a model that reflects all information on repeated measures. A recurrent neural network can be built to develop a predictive model using repeated measures. However, there are long-term dependencies and vanishing gradient problems. Meanwhile, long short-term memory method can be applied to solve problems with long-term dependency and vanishing gradient by assigning a fixed weight inside the cell state. Unlike traditional statistical methods, deep learning methods allow researchers to build non-linear models with high accuracy and predictability, using information from multiple time points. However, deep learning models cannot be interpreted; although, recently, many methods have been developed to do so by weighting time points and variables using attention algorithms, such as ReversE Time AttentIoN (RETAIN). In the future, deep learning methods, as well as traditional statistical methods, will become essential methods for big data analysis.

CPP : Cardiovascular Prevention and Pharmacotherapy
TOP