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INTRODUCTION 

The diagnosis of nonalcoholic fatty liver disease (NAFLD) 

requires the presence of imaging or histologically docu-

mented steatosis (>5%), and as a “condition of exclusion,” it 

is necessary to rule out secondary causes that induce such 

steatosis, such as alcohol intake, viral infection, drugs, and 

genetic factors [1,2]. However, based on the argument that 

the term “NAFLD” does not reflect the diversity and het-

erogeneity of the disease, a new definition was proposed 

along with a new term, “metabolic dysfunction-associated 
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Nonalcoholic fatty liver disease (NAFLD), which has recently undergone a change in its definition and acronym to “metabolic dys-
function-associated fatty liver disease (MAFLD),” is clinically significant as an increasingly prevalent independent risk factor for car-
diovascular diseases. Insulin resistance is considered to be a key mechanism in the development and progression of NAFLD/MA-
FLD, and fatty liver disease itself may exacerbate insulin resistance. In this review, we describe the mechanisms underlying the in-
teraction between insulin resistance and fatty liver, and we summarize the therapeutic attempts based on those mechanisms. 
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fatty liver disease (MAFLD)” [3]. MAFLD is a “diagnosis of 

inclusion” that refers to a condition in which various liver 

diseases, including those induced by alcohol, may coexist. 

In particular, diabetes and insulin resistance (IR) are be-

coming important diagnostic criteria [4]. However, these 

two terms are often used interchangeably without an exact 

distinction, and the results of previous studies and our ex-

tant understanding of fatty liver are all based on the preex-

isting definition of NAFLD. In this review, the term “NAFLD” 

will continue to be used when describing previous research 

results. 
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The global prevalence of NAFLD is approximately 25%, 

despite regional variation, and its prevalence is gradually 

increasing, which is related to the increasing prevalence of 

obesity [5–7]. NAFLD patients have a higher mortality rate 

than those without NAFLD, and NAFLD is clinically signif-

icant as an independent risk factor for cardiovascular dis-

ease (CVD) [8–11]. This review summarizes the molecular 

pathophysiology of IR, a key mechanism of NAFLD, which 

is emerging as an important culprit of CVD [12,13], and dis-

cusses therapeutic attempts based on this theoretical back-

ground.  

OBESITY, INFLAMMATION, AND IR 

It is well known that obesity promotes systemic inflamma-

tory conditions and is thus closely related to the induction 

of IR [14]. In particular, abdominal visceral fat is associ-

ated with peripheral and hepatic IR in patients with type 

2 diabetes, and excessive subcutaneous fat in men is also 

associated with hepatic and peripheral IR [15]. A compar-

ative study found that abdominal fat accumulation was 

correlated with IR, but subcutaneous fat accumulation 

was correlated with the level of leptin [16]. Thus, IR may be 

affected by fat distribution, especially abdominal obesity, 

rather than simple obesity. The levels of adiponectin, an ad-

ipokine secreted from adipocytes, are inversely associated 

with the amount of fat in the abdomen and liver, which is 

closely related to hepatic and peripheral IR [17,18]. Obesity 

and its subsequent activation of proinflammatory path-

ways, including tumor necrosis factor-α (TNF-α), C-reactive 

protein, interleukin-6 (IL-6), plasminogen activator inhib-

itor-1, and leptin, are considered an important causative 

element in the pathophysiology of IR [14,19]. A rat-based 

study identified for the first time that adipocytes express the 

inflammatory cytokine TNF-α, and in particular, TNF-α lev-

els are further increased in the obese state [20]. Consistent 

results have also been reported in humans [21]. Obesity is 

also associated with elevated IL-6 levels [22]. The elevation 

of TNF-α and IL-6 is thought to have a causal relationship 

with IR and type 2 diabetes [23]. Endoplasmic reticulum 

stress, reactive oxygen species, and ceramide induced in 

conditions of obesity or excessive nutrient intake lead to 

activation of the nuclear factor-κB (NF-κB) pathway and the 

c-Jun NH2-terminal kinase (JNK) pathway, resulting in an 

increase in inflammatory cytokines that inhibit insulin sig-

naling [19,24–27]. In a knockout mouse model, inhibition 

of JNK1 and the inhibitor of NF-κB kinase β (IKK-β), which 

activates NF-κB, ameliorated IR locally (liver) or systemi-

cally [28,29]. The anti-inflammatory mechanism of insulin 

is well known [30,31]. As a mechanism of mutual influence, 

IR caused by activation of the inflammatory pathway fur-

ther exacerbates inflammation, resulting in a vicious cycle 

(Fig. 1) [32]. 

IR AND HEPATIC STEATOSIS/STEATOHAPATITIS 

NAFLD is a disease with a diverse spectrum that leads to 

nonalcoholic steatohepatitis (NASH) and cirrhosis, and 

is closely related to the development of type 2 diabetes, 

as well as CVD [33]. The association between NAFLD and 

hepatic IR, as well as systemic or adipocyte IR, has been 

well documented in previous studies [34–36], and the rela-

tionship may be independent of the degree of visceral fat 

[37,38]. In research from recent decades, IR has been con-

sidered a key mechanism responsible for the development 

and progression of NAFLD [33,39,40]. The hepatic fatty 

acid supply, the source of triacylglycerol (TG) synthesis, 

is largely divided into diet, lipolysis, and hepatic de novo 

lipogenesis (DNL) [36]. In addition to the dietary fatty acid 

supply from a high-fat diet, a high-carbohydrate diet also 

promotes DNL in the liver [41]. The most important con-

cern is that the largest source of TG synthesis in patients 

with NAFLD under dietary control is free fatty acids (FFAs) 

from lipolysis in adipocytes [42]. Insulin has a strong ana-

bolic action, especially insofar as it promotes the synthesis 

of adipocytes while inhibiting lipolysis. The suppression of 

the antilipolysis effect of insulin under IR conditions leads 

to the excessive production of FFAs, which enter the liver 

and accumulate [43,44]. Moreover, hyperinsulinemia under 

IR conditions also promotes DNL. In mouse models, hepat-

ic adipogenesis was regulated according to the activity of 

sterol receptor binding protein 1c (SREBP-1c) [45,46], and 

increased insulin levels activate SREBP-1c [47]. As a result, 

elevated TG levels are used as another source of circulating 

FFAs, and during this process, very-low-density lipoprotein 

synthesis is also elevated. However, activation of the fork-

head box protein A2 (FOXA2) promotes lipid metabolism 

and ketogenesis (i.e., fatty acid oxidation). FOXA2 is activat-

ed in low-insulin conditions, such as a fasting state, while 

remaining inactive in hyperinsulinemia with IR, promoting 
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hepatic lipid accumulation (Fig. 1) [48]. 

Through these various effects, IR induces early hepatic 

steatosis, which can be said to be an “adaptation process” 

for excessive FFA influx. As part of this adaptation process, 

hepatic mitochondrial respiratory rates are increased in 

obese individuals with IR only but no NASH [49]. Reducing 

the conversion to TG by inhibiting diacylglycerol O-acyl-

transferase 2, a key enzyme in the conversion process from 

FFA to TG, causes excessive fatty acid oxidation through 

cytochrome P450 2E1 (CYP2E1) and increases oxidative 

stress. This leads to hepatocellular damage that worsens 

into steatohepatitis [50]. 

Although IR is described as a major physiological cause of 

fatty liver, some hypotheses and evidence also suggest that 

fatty liver itself is one of the major causes of IR exacerbation 

under various conditions, such as a high-fat diet [36,51,52]. 

FFA influx into the liver induces abnormal increases in 

long-chain fatty acyl-CoA and diacylglycerol/TG, and in-

creased levels of these substances induce the translocation 

of protein kinase C-δ (PKC-δ) from the cytosol to the plasma 

membrane, resulting in its activation. It is thought that this 

activated PKC-δ phosphorylates insulin receptor substrates 

and molecules in the insulin pathway, causing hepatic IR 

and increased glucose production in the liver [53]. FFAs also 

activate the IKK-β and JNK pathways, inducing IR via PKC-θ 

activation [54]. These NF-κB and JNK pathways are also ac-

tivated by Toll-like receptor, which can be activated by fatty 

acid influx [55,56]. When SREBP-1c, which is activated in 

hyperinsulinemia and plays a role in promoting DNL, was 

overexpressed in mice, the homeostasis model assessment 

of IR (HOMA-IR), a metric for evaluating IR, increased [57]. 

Mice with fatty liver induced through the inhibition of fatty 

Fig. 1. Link between insulin resistance and the development and progression of nonalcoholic fatty liver disease. ChREBP, carbohydrate 
response element-binding protein; CRP, C-reactive protein; DAG, diacylglycerol; DNL, de novo lipogenesis; ER, endoplasmic reticulum; 
FA, fatty acid; FFA, free fatty acid; FOXA2, forkhead box protein A2; IL-6, interleukin-6; JNK, c-Jun NH2-terminal kinase; NASH, nonalco-
holic steatohepatitis; NF-κB, nuclear factor-κB; PAI-1, plasminogen activator inhibitor-1; ROS, reactive oxygen species; SREBP-1c, sterol 
receptor binding protein-1c; TG, triacylglycerol; TLR, Toll-like receptor; TNF-α, tumor necrosis factor-α; VLDL, very-low-density lipoprotein.
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acid oxidation showed systemic IR [58]. A particularly in-

teresting fact is that “hepatic mitochondrial flexibility (in-

creased mitochondrial respiratory rates)” is lost in NASH, 

while hepatic IR and systemic inflammation further prog-

ress [49], leading to a vicious cycle (Fig. 1). 

In NAFLD with hepatic IR, the concept of pathway-spe-

cific hepatic insulin resistance was introduced to explain 

the paradoxical condition in which DNL is increased, 

whereas the inhibition of hepatic gluconeogenesis is rather 

impaired, even in hyperinsulinemia. That is, the insulin 

activation pathway protein kinase B/forkhead box protein 

O1 pathway is inhibited, whereas the SREBP-1c pathway is 

maintained and activated [59]. However, recently, the role 

of lipogenic substrates has been recognized as important 

in this process, and a recent review described research re-

sults showing that the activation of carbohydrate response 

element-binding protein (ChREBP) induces an increase in 

precursors of DNL and an increase in enzymes that aggra-

vate hepatic steatosis, especially under exposure to lipogen-

ic substrates (Fig. 1) [60]. 

If conditions of IR and increased FFA influx persist, he-

patic damage caused by reactive oxygen species induced 

by fatty acid oxidation and direct lipotoxicity accumulates. 

At this stage, hepatic macrophages (i.e., Kupffer cells), es-

pecially proinflammatory M1 Kupffer cells stimulated by 

Toll-like receptor ligands and interferon-γ, play an import-

ant role in the progression of NAFLD to fibrosis or NASH. 

These cells secrete inflammatory cytokines (TNF-α, IL-6, 

etc.) that induce hepatic and systemic IR (Fig. 1) [61,62]. 

In actual clinical studies, the degree of IR evaluated by 

HOMA-IR could predict the current fibrosis stage and fu-

ture fibrosis progression in patients with NAFLD [63–66]. 

Changes in HOMA-IR were even associated with changes 

in fibrosis status when evaluated by noninvasive fibrosis 

indices [67]. 

IR AND THERAPEUTIC POTENTIAL 

Based on the mechanisms of IR interconnected with the de-

velopment and progression of NAFLD/MAFLD described 

so far, it can be inferred that a therapeutic approach focused 

on improving IR may be the key to treating NAFLD/MAFLD 

[1,2]. Clinically, improvements in hyperinsulinemia alone 

could actually reduce the risk of NAFLD in subjects without 

diabetes [39]. To date, regardless of obesity or diabetes, the 

only validated and approved treatment for NAFLD/MAFLD 

is lifestyle modification [1,2,68]: weight loss [69–73], calorie 

restriction [74,75], sustained exercise above a certain inten-

sity [76–78], or a combination of these interventions [70,79]. 

Hepatic steatosis improved only with a weight loss of 5% or 

more, and a weight loss of 7% or more provided histologi-

cal improvement such as inflammation and fibrosis. When 

diet was restricted to 30% or less than 1,000 kcal per day, 

hepatic steatosis and IR improvement could be obtained. 

In addition, exercising for 150 minutes or more per week or 

engaging moderate-intensity exercise (≥10 minutes) five or 

more times per week was found to lead to improvements in 

NAFLD and aminotransferase enzyme levels, regardless of 

body mass index or weight loss. In particular, incorporat-

ing exercise rather than diet restriction alone led to more 

weight loss and histological improvement. 

Pharmacological treatment may also be helpful, although 

it is limited to cases that have progressed to NASH or fibro-

sis and cases accompanied by complications such as diabe-

tes. Among insulin sensitizers, metformin, a representative 

member of the biguanide class, improved aminotransferase 

levels and liver volume in NASH patients [80], and, in an 

open-label, randomized control trial, metformin showed 

better improvement in liver enzyme levels than vitamin E 

or dietary regimens. However, histological improvement 

could not be confirmed statistically [81]. A meta-analysis 

interpreting various other randomized controlled trials con-

firmed that metformin can help improve liver enzyme levels 

and IR, but does not guarantee histological improvement 

[82]. 

Pioglitazone, which is the only approved and available 

thiazolidinedione in the United States and Europe exclud-

ing Korea, is an agonist of peroxisome proliferator-activated 

receptor-γ that has demonstrated histological improvement 

in patients with NASH with or without type 2 diabetes in 

many studies [83–86]. In those studies, administration of 

pioglitazone led to improvements in the NAFLD activity 

score and liver enzyme levels, as well as some improvement 

in fibrosis, compared to the control group. In a multicenter, 

prospective, open-label, exploratory clinical trial conducted 

in Korea, lobeglitazone also showed improvements in liver 

enzyme levels and hepatic steatosis evaluated by transient 

liver elastography [87]. Thiazolidinedione improves IR in 

various parts of the body, such as the skeletal muscle and 

fat, as well as the liver, and redistributes liver and visceral fat 
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to the periphery. It also promotes fatty acid oxidation. The 

most common adverse event is an increase in body weight. 

Although some studies have reported that pioglitazone is 

associated with an elevated risk for bladder cancer [88], 

other studies have found no such associations [89]. 

Vitamin E is expected to improve IR through its antioxi-

dant effects, and it led to histological improvements in non-

diabetic NASH patients in the Placebo for the Treatment 

of Nondiabetic Patients with Nonalcoholic Steatohepatitis 

(PIVENS) trial [84]. In this trial, 800 IU/day of vitamin E 

supplementation showed improvement in NAFLD activity 

score, hepatocellular ballooning, and lobular inflammation. 

In the Treatment of NAFLD in Children (TONIC) trial for 

children aged 8 to 17 years, vitamin E prescription did not 

show a statistically significant reduction in alanine amino-

transferase and hepatic steatosis, but it was confirmed that 

hepatocellular ballooning improved, and the NASH disap-

pearance rate was high [90]. A meta-analysis study based on 

randomized clinical trials has demonstrated the usefulness 

of vitamin E for NAFLD/NASH [91]. For NASH patients who 

are not obese, some societies may consider prescribing vi-

tamin E under the premise that there is no diabetes and cir-

rhosis [68]. However, further research is still needed on the 

issue of long-term safety, including mortality or malignan-

cy, and the consistency of effectiveness of this agent [92,93]. 

Some published studies have demonstrated the effects of 

glucagon-like peptide-1 (GLP-1) agonists on NAFLD/NASH 

[94,95]. In NASH patients, when 1.8 mg of liraglutide was 

administered subcutaneously daily, the NASH remission 

rate was four times higher than in the placebo group (relative 

risk, 4.3) and the risk of fibrosis progression was five times 

lower (relative risk, 0.2) [94]. Moreover, when 0.1 to 0.4 mg 

of semaglutide was subcutaneously administered daily, the 

NASH remission rate was at least two times higher than in 

the placebo group, and in particular, the 0.4-mg administra-

tion group had a NASH remission rate that was more than 

three times higher (17% vs. 59%) [95]. Recent studies have 

suggested various metabolic benefits of sodium-glucose 

cotransporter 2 (SGLT2) inhibitors. In patients with type 

2 diabetes who received empagliflozin (25 mg) daily for 

24 weeks, compared to the placebo group, the decrease in 

intrahepatic fat mass as assessed by magnetic resonance 

imaging was 2.3 times greater, and the adiponectin level 

increased (36%). However, there was no change in insulin 

sensitivity [96]. In type 2 diabetes patients with NAFLD 

who received dapagliflozin (10 mg) daily for 12 weeks, the 

amount of intrahepatic fat was also significantly reduced 

compared to the placebo group (5.8±5.1 Hounsfield units 

vs. 0.5±6.1 Hounsfield units, P=0.006), but there were no 

significant changes in the levels of adipokines, such as adi-

ponectin [97]. However, GLP-1 agonists and SGLT2 inhibi-

tors are not yet officially recommended for the treatment of 

NAFLD/MAFLD [2,68]. 

In addition to the agents mentioned above, new concepts 

of drugs are being proposed. In the case of elafibranor, a 

proliferator-activated receptor-α/δ agonist, histological im-

provement could not be confirmed in NASH patients, but 

improvements in HOMA-IR, FFA, and TG were identified 

in more severe inflammatory conditions [98]. Obeticholic 

acid, a farnesoid X receptor agonist, which can be expected 

to improve steatosis by inhibiting the expression of SREBP-

1c and ChREBP, is currently undergoing a phase 3 clinical 

study. According to the data published so far, histological 

improvement was shown in NAFLD/NASH patients, but its 

safety was not yet proven [99,100]. 

CONCLUSIONS 

The clinical significance of NAFLD/MAFLD is increasingly 

being emphasized, as its prevalence increases, and there is 

currently a shift toward new definitions and concepts of this 

condition. IR is a key pathophysiological mechanism that 

can be both a cause and a consequence of NAFLD/MAFLD. 

Fatty liver is a representative phenotype of various metabol-

ic diseases, and active early management and attention are 

needed given its role in increasing the risk of CVD. 
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